

Institute of Ag Professionals

Proceedings of the

2009 Crop Pest Management Shortcourse &

Minnesota Crop Production Retailers Association Trade Show

www.extension.umn.edu/AgProfessionals

Do not reproduce or redistribute without the written consent of author(s).

CORN NEMATODES What's the Big Deal about these Tiny Worms?

Univ. of Minnesota CPM Short Course December 10, 2009

Tamra Jackson

Extension Plant Pathologist University of Nebraska - Lincoln

XTENSION

Why do we expect nematode damage in corn to increase?

- 1. Changes in insecticide chemistries
 - Less OPs and carbamates and more pyrethroids
- 2. Reduction in soil insecticide use

EXTENSION

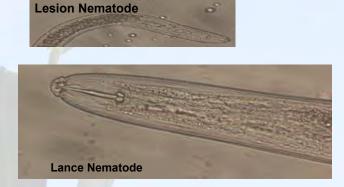
- Transgenic insect resistant corn
- 3. Shift back toward more continuous corn

Why the renewed interest in corn nematodes?

- 1. Fine tuning other management practices
 - E.g. nutrient and pest management

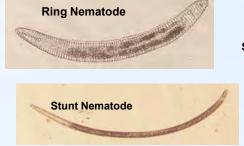
2. Industry driven

- New delivery system for Counter® (AMVAC)
- New and pending seed treatment products
 - Syngenta*, Bayer CropScience, Plant Health Inc.


3. Commodity prices

3 Facts About Corn Nematodes Reject the Misconceptions

1.There are MANY types of nematodes that can damage corn.
-Usually aren't cysts!
-At least 12 different genera (not species) exist nationwide



Nebraska

EXTENSION

Spiral Nematode

Some Corn Nematodes in the Midwest

- Needle
- Sting
- Dagger
- Spiral
- Stunt
- Stubby root
- Lance
- Lesion

≻Ectoparasites

Courtesy S. W. Westcott III , APS

Endoparasites

Courtesy of D. Wixted, APS

Nebraska Lincoln EXTENSION

Endoparasitic Nematodes

- Spend most of their lives
 inside roots
 - Nematode analyses of soil samples are NOT enough
 - Labs should also extract
 - nematodes from roots!

Nebraska

EXTENSION

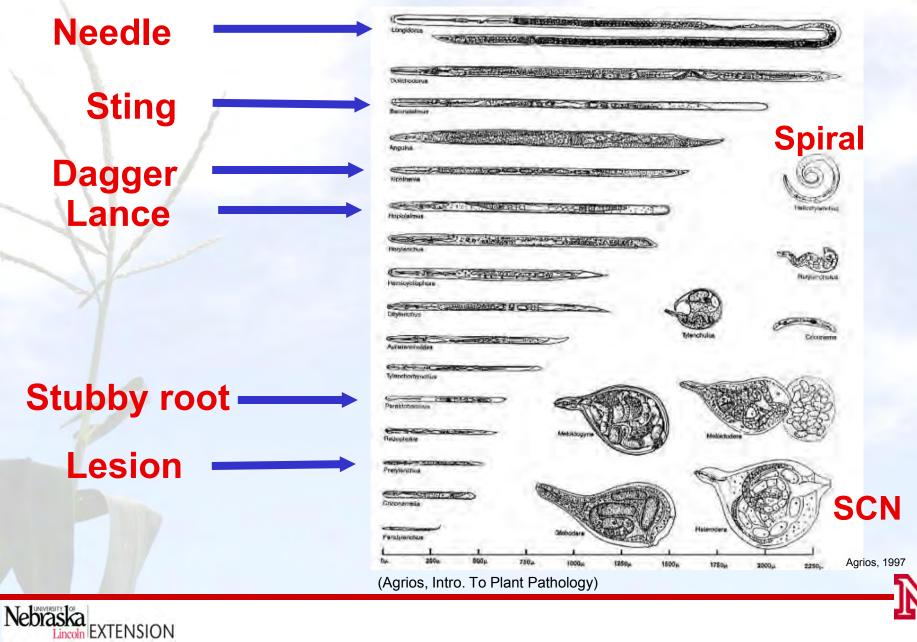
- From separate root samples OR
- Root fragments from soil cores

Relative Damage Risks

• High Risk:

Nebraska

- Sting (Belonolaimus)
- Needle (Longidorus)
- Moderate Risk:
 - Stubby-root (Paratrichodorus)
 - Lance (Hoplolaimus)
 - Lesion (Pratylenchus)
- Low or Undetermined Risk:
 - Spiral (Helicotylenchus)
 - Stunt (Tylenchorhynchus)
 - Dagger (Xiphinema)


3 Facts About Corn Nematodes Reject the Misconceptions

2. Corn nematodes occur in EVERY soil texture, not just sandy soils.
-Only some require sandy soil
-One of the most common nematodes is lesion, found in >90% of Nebraska fields (450+ samples from 63 counties 2006-2007)

Nebraska Lincoln EXTENSION

Relative Sizes of Plant Parasitic Nematodes

3 Facts About Corn Nematodes Reject the Misconceptions

3. Corn nematode damage is not rare; it is probably more common than expected and frequently misdiagnosed.

-Many types of nematode symptoms

-Symptoms are not diagnostic and mimic those caused by many other common problems

Nebraska

Soybean Cyst Nematode as a Model

- SCN: Substantial yield loss can occur w/o other visible or measurable symptoms
- Crop appearance may not indicate the below-ground variability
- What about corn nematodes? Need more research!!

Urbana, IL Avg >10,000 eggs/ 100 cc soil Range: 200 - 40,000 eggs/100 cc soil T. Jackson, UNL Nebraska EXTENSION

Some Types of Symptoms Caused by Nematodes in Corn

- Chlorosis (yellowing)
- Stunting
- Root necrosis
- Uneven height
- Uneven tasseling
- Misshapened roots
- Yield Loss

Nebraska

EXTENSION

Needle Nematode Holt County, NE

T. Jackson, UN

Watch

Needle Nematode Whiteside County, IL - July 2003

Sting Nematode Holt County, NE - July 2008

Patchy Distribution of Symptoms Sting Nematode

Dodge County, NE June 2006 Lesion nematodes Lance nematodes Dagger nematodes Stubby-root nematodes

* Farm average = 180 bu/A
 Yield in small plots was as low as 30 bu/A

T. Jackson, UNL

Upper Plant Symptoms

Uneven plant height

T. Jackson, UNL

Normal roots

Stubby Root Nematode Injury

Stubby roots

T. Jackson, UNL

Root-Lesion Nematodes

- Migratory endoparasites
- Believed to be the most important nematodes in corn
- Small and not restricted by soil texture
- Six known species parasitize corn; some have a wide host range limiting the effect of crop rotation
- Identified in >90% of surveyed NE fields

Nebraska FXTENSION

Mimics Don't be fooled!

- Symptoms caused by nematodes can mimic several other problems, such as:
 - Insect injury
 - Herbicide injury
 - Nutrient deficiency
 - Soil compaction
 - Low/high soil pH
 - More. . .

EXTENSION

Low Ph (4.6) Aluminum toxicity Ca and Mg Deficiency

Conclusions about Symptoms

- Many types of nematode symptoms in corn
- Symptoms are NOT diagnostic
- Symptoms may mimic those caused by other problems
- Symptoms can't and shouldn't be used exclusively to:
 - Make nematode diagnoses

EXTENSION

- Differentiate between nematode genera
- Differentiate from other types of abiotic or biotic injury
- Symptoms should be used to identify locations for further testing and observation
- Definitive diagnoses may only be made after appropriate sample collection, submission, and completion of nematode analyses

11	2007			
Methodology	2007	State	Counties	Samples
3/		Colorado	10	30
 16 States 		Illinois	90	268
– 727 counties		Indiana	76	228
-727 counties		Iowa	99	297
 >20K acres corn 		Kansas	60	180
– 3 samples/county		Kentucky	18	54
		Michigan	33	99
 2179 samples soil- 	roots	Minnesota	57	171
 Collection coordina 	ated by	Missouri	47	141
		Nebraska	73	219
private contractor		North Dakota	15	45
$\frac{1}{2}$		Ohio	48	144
 June/July 2007 		Oklahoma	2	6
 Samples submitted 	to 1 of 6	South Dakota	46	138
		Wisconsin	52	156
labs		Wyoming	1	3
		16	727	2179

Nebraska Lincon EXTENSION

Results

- Root-lesion (*Pratylenchus* spp.) in 81% locations
- Sting (Belonolaimus spp.), needle (Longidorus spp.), and stubby-root (Paratrichodorus spp.) were NOT found
- 99.2% samples had plant parasites

Results

Nebraska Lincoln EXTENSION

uits			Locion		
State		Lesion	Lesion		No
State	Samples	(Soil)	(Roots)	Total Lesion	Nematodes
Colorado	30	86.7%	53.3%	86.7	7
Illinois	268	76.1%	27.2%	79.5	0
Indiana	228	93.0%	36.0%	75.9	0
Iowa	297	66.0%	41.4%	79.8	0.7
Kansas	180	82.8%	71.1%	90.6	1
Kentucky	54	44.4%	9.3%	48.1	0
Michigan	99	63.6%	38.4%	89.1	1
Minnesota	171	83.0%		71.3	2
Missouri	141	80.9%	4.3%	85.8	0
Nebraska	219	77.2%	76.3%	93.6	0
North Dakota	45	22.2%	44.4%	55.6	4
Ohio	144	62.5%	18.1%	68.7	0
Oklahoma	6	100.0%		100.0	0
South Dakota	138	76.8%	41.3%	79.7	4
Wisconsin	156	97.4%	89.1%	99.4	0
Wyoming	3	100.0%		100.0	0
	2179	76.5%	40.4%	81.4%	0.8%

Conclusions and Interpretation

- Plant parasites are common in corn fields to varying degrees
- Sting, needle, and stubby-root
 - Sparse distribution vs. sample timing
- Other genera dagger, stunt, spiral, ring, pin
 - Common

EXTENSION

Less damaging

Conclusions and Interpretation

- Need more sampling?
- Variability by state
 - Variability among laboratories
- Raising awareness
- Research opportunities

Conclusions and Interpretation

- "Thresholds"
 - Guidelines
 - Differ by field env x crop year
 - Pitfalls
 - E.g. spiral (Helicotylenchus spp.)
 - Don't consider
 - Species differentiation
 - Environmental impacts
 - Interaction effects
 - Dated

EXTENSION

Sampling Procedure

- Differs from SCN!
- "4-6 Rule"

FXTENSION

Nebraska

– Timing

- 4-6 weeks after planting
 - Considering root and nematode depth
 - Some, not all, stay in the upper soil

-Probing

- 4-6 inches from plant
 - Through the root zone

Not all genera of corn nematodes are in the same place at the same time.

Depth of Sample	Nematodes per 100 cm ³ Soil						
	N	lay 21	September 12				
	Needle	Root-Lesion	Needle	Root-Lesion			
0 - 3.5"	25	124	3	440			
3.6 - 6"	14	105	8	279			
6.1 - 9.5"	10	127	17	222			
9.6 - 12"	4	40	15	32			
12.1-15.5"	1	27	4	30			

Needle and root lesion nematodes showed a different pattern of vertical distribution in a corn field in Wisconsin.

MacGuidwin, J. Nematology 21:404-408, 1989

Sampling Procedure

Nematodes MUST be alive!

Reliability of test results depends upon the quality of the sample!

Nebraska

EXTENSION

- UNL Plant & Pest
 Diagnostic Clinic
- Sample at 45° angle
- Collect ≥2 c of soil
- Plastic zipper top bags
- No root balls needed!
- Your lab should test for BOTH endo- and ectoparasitic nematodes
- Contact your lab for specific questions

Severe Needle Nematode Injury

Sampling Strategies

Sampling strategy depends on your objective, so if you are trying to:

- Diagnose a problem spot
 - If severe, sample perimeter, or use yield monitor to ID
 - Consider collecting a second sample from nearby
- Determine a baseline
 - Random pattern

KTENSION

- Evaluate nematicide efficacy
 - Sample BOTH at planting and 4-6 weeks later
 - For calculation of reproductive factor (Rf)
 - Smallest area that is possible and practical

A New Cyst Nematode of Corn

 Identified in a sample from northwestern Tennessee (Obion County) in 2006

> photos by University of Missouri-Columbia nematologists, R. Heinz and M. Mitchum

Distribution unclear

Nebraska FXTENSION

- Apparent narrow host range
- Could complicate future SCN sampling and research
- Not the same cyst nematode identified and quarantined in MD and VA

Acknowledgments

- Technical staff
 - J. Behn

extension

- J. Millhouse
- Hourly employees

Other Survey Testing Laboratories:

- A. MacGuidwin Univ. of Wisconsin
- T. Todd Kansas State Univ.
- R. Heinz & M. Mitchum Univ. of Missouri
- D. MacDonald Univ. of Minnesota
- G. Dappen Nema-Test, Lincoln, NE

Funding provided by Syngenta Seed Care

-NI-

Search:

UNL Quick Links

UNIVERSITY OF NEBRASKA-LINCOLN

Plant Disease Central

Extension Plant Pathology

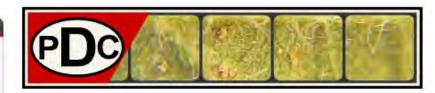
UNL) Home

pdc.unl.edu

Navigation

Home Plant Disease Basics

Agriculture Crops Corn, Soybean, Wheat, Sorghum, Alfalfa


Specialty Crops Sugar Beet, Dry Bean, Sunflower, Chickpea

Urban & Landscape Plants Ornamentals, Trees

Fruits and Vegatables Backyard Fruits, Backyard Vegatables

PDC Specialists Loren Giesler, Tamra Jackson, Stephen Wegulo, Amy Ziems, Robert Harveson

Disease Forecasts Sugar Beet Cercospora Alert, Wheat, Soybeans Nebraska FXTENSION

Plant Disease Central

Mission: To be the plant disease information and management resource for the state of Nebraska.

Plant Disease Central (PDC) was developed by the Extension Plant Pathology Team in the **Department of Plant Pathology** at the University of Nebraska-Lincoln for extension educators, home owners, urban landscape managers, agricultural consultants, crop producers and other agricultural professionals in Nebraska. This site will be updated and expanded as information becomes available, as additional and better images are acquired, and as resources allow.

The resources found on PDC were assembled to help users diagnose and manage plant diseases in Nebraska. The most critical issue for profitable management of plant diseases is obtaining a correct diagnosis. In any given year, the question is not whether or not diseases will occur in Nebraska but rather which diseases will occur and at what incidence and severity. Diagnosis of plant diseases can be difficult in the early stages of disease development. Users will find links to the University of Nebraska-Lincoln Plant and Pest Diagnostic Clinic, and the Panhandle Plant Disease Diagnostic Lab on this page for confirmation and assistance with diagnosis. For many diseases, symptoms become diagnostic and a reasonable level of confidence can be placed in diagnoses based on symptoms.

UNL Web

cal/people/weather/cam

CO

¥ 60